Installation
Requirements
Pandas TA Classic requires:
Python (the latest stable version plus the prior 4 minor versions)
pandas
numpy
Note
Python version support follows a rolling policy: the latest stable Python version plus 4 preceding minor versions. When new Python versions are released, support is automatically updated via CI/CD workflows. Check the CI workflow for the current supported versions.
Optional Dependencies
For enhanced functionality, consider installing:
TA-Lib: Enables all 60+ candlestick patterns
yfinance: For downloading stock data with
df.ta.ticker()vectorbt: For backtesting integration
Installation Methods
Pandas TA Classic supports both modern uv and traditional pip package managers.
Stable Release (Recommended)
Install the latest stable release from PyPI:
Using uv (recommended - faster):
uv pip install pandas-ta-classic
Using pip:
pip install pandas-ta-classic
Latest Development Version
Install the most recent version with all latest features and bug fixes:
Using uv:
uv pip install git+https://github.com/xgboosted/pandas-ta-classic
Using pip:
pip install -U git+https://github.com/xgboosted/pandas-ta-classic
Development Installation
For contributing to the project or testing unreleased features:
Using uv:
# Clone the repository
git clone https://github.com/xgboosted/pandas-ta-classic.git
cd pandas-ta-classic
# Install in editable mode with all dependencies
uv pip install -e ".[all]"
# Or install specific dependency groups:
uv pip install -e ".[dev]" # Development tools
uv pip install -e ".[optional]" # Optional features like TA-Lib
Using pip:
# Clone the repository
git clone https://github.com/xgboosted/pandas-ta-classic.git
cd pandas-ta-classic
# Install in editable mode with all dependencies
pip install -e ".[all]"
# Or install specific dependency groups:
pip install -e ".[dev]" # Development tools
pip install -e ".[optional]" # Optional features like TA-Lib
Note
Development Installation Requirements:
Full git repository with history and tags (not a shallow clone)
setuptools-scm is automatically installed as a build dependency
Git tags determine the package version (e.g.,
0.3.36.dev1for development,0.3.35for releases)See the Version Management section in CONTRIBUTING.md for details
Installing TA-Lib
To use all candlestick patterns, install TA-Lib:
Windows/macOS/Linux:
Using uv:
uv pip install TA-Lib
Using pip:
pip install TA-Lib
Note: If you encounter installation issues with TA-Lib, refer to the TA-Lib installation guide.
Installing Optional Dependencies
For complete functionality:
Using uv:
# For stock data download
uv pip install yfinance
# For backtesting
uv pip install vectorbt
# For enhanced performance (if available for your system)
uv pip install numba
# Install all optional dependencies at once
uv pip install pandas-ta-classic[optional]
Using pip:
# For stock data download
pip install yfinance
# For backtesting
pip install vectorbt
# For enhanced performance (if available for your system)
pip install numba
# Install all optional dependencies at once
pip install pandas-ta-classic[optional]
Verification
Verify your installation:
import pandas_ta_classic as ta
import pandas as pd
# Create a simple DataFrame
df = pd.DataFrame({'close': [100, 101, 102, 101, 100]})
# Test an indicator
sma = df.ta.sma(length=3)
print(sma)
# List all available indicators
print(f"Available indicators: {len(df.ta.indicators())}")
If this runs without errors, you’re ready to use Pandas TA Classic!